Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores

نویسندگان

  • Adrien Chauvin
  • Cyril Delacôte
  • Mohammed Boujtita
  • Benoit Angleraud
  • Junjun Ding
  • Chang-Hwan Choi
  • Pierre-Yves Tessier
  • Abdel-Aziz El Mel
چکیده

We report on a novel fabrication approach of metal nanowires with complex surface. Taking advantage of nodular growth triggered by the presence of surface defects created intentionally on the substrate as well as the high tilt angle between the magnetron source axis and the normal to the substrate, metal nanowires containing hillocks emerging out of the surface can be created. The approach is demonstrated for several metals and alloys including gold, copper, silver, gold-copper and gold-silver. We demonstrate that applying an electrochemical dealloying process to the gold-copper alloy nanowire arrays allows for transforming the hillocks into ring-like shaped nanopores. The resulting porous gold nanowires exhibit a very high roughness and high specific surface making of them a promising candidate for the development of SERS-based sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-Selective Controlled Dealloying Process of Gold-Silver Nanowire Array: a Simple Approach towards Long-Term Stability and Sensitivity Improvement of SERS Substrate

Limitations of achieving highly sensitive and stable surface-enhanced Raman scattering (SERS) substrate greatly concern the suitable method for fabrication of large-area plasmonic nanostructures. Herein we report a simple approach using template-based synthesis to create a highly ordered two-dimensional array of gold-silver alloy nanowires, followed by the controlled dealloying process. This pa...

متن کامل

Characterization of nanoporous gold electrodes for bioelectrochemical applications.

The high surface areas of nanostructured electrodes can provide for significantly enhanced surface loadings of electroactive materials. The fabrication and characterization of nanoporous gold (np-Au) substrates as electrodes for bioelectrochemical applications is described. Robust np-Au electrodes were prepared by sputtering a gold-silver alloy onto a glass support and subsequent dealloying of ...

متن کامل

A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys.

We report a novel strategy for the fabrication of nanoporous gold (NPG) films. The fabrication process involves the electrodeposition of a gold-tin alloy, followed by subsequent chemical dealloying of tin. Scanning electron microscopy (SEM) images show a bicontinuous nanoporous structure formed on the substrates after chemical dealloying. Energy dispersive x-ray (EDX) analysis indicates that th...

متن کامل

Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation

Nanoporous gold has many potential applications in various fields, including energy storage, catalysis, sensing and actuating. Dealloying of Ag–Au alloys under free corrosion conditions is a simple method to fabricate nanoporous gold. Here, we systematically investigate the dealloying rate of Ag–xAu alloy for a range of alloy compositions (x = 20–40 at.%) and nitric acid concentration (7.3–14.9...

متن کامل

Nanoporous pt-co alloy nanowires: fabrication, characterization, and electrocatalytic properties.

Nanoporous Pt-Co alloy nanowires were synthesized by electrodeposition of Co-rich Pt(1)Co(99) alloy into anodic aluminum oxide (AAO) membranes, followed by a dealloying treatment in a mild acidic medium. These nanowires consist of porous skeletons with tiny pores of 1-5 nm and crystalline ligaments of 2-8 nm. Morphological and compositional evolutions of the porous Pt-Co nanowires upon dealloyi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016